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1. The well-known theorems of Korovkin [5] assert the following:

(i) If Un} is a sequence of positive linear functionals on e[G, 1] and
if to is a paint in [0, 1J, then fn(x) -+ x(to) for all x E C[O, ij, provided only
thatj,,(l) -> 1 andfn((t - to)2) -+ 0.

(ii) If {Tn} is a sequence of positive linear operators on C[O, 1] into
itself, then Tn(x) -+ x, in the uniform topology, provided only that ill) ---+ 1,
Tn(t) -+ t, and T n(t 2) -+ t 2 in that topology.

Here e[O, 1] denotes the algebra of all continuous real-valued functions
on the unit interval [0, 1]. These theorems are fundamental in Korovkin's
theory of approximation. Indeed, in [5J, several proofs have been given to
the Weierstrass approximation theorem for algebraic polynomials. all based
on (ii).

In the present paper, we generalize (i) and (ii) to arbitrary C*-algebras.
Our main results are Theorems 2.2 and 3,4, corresponding, respectively, to
0) and (ii). We note that Arveson's method in [2] plays an essential role in
the proof of Theorem 3.4-

Korovkin-type theorems for noncommutative C*-algebras have been
proved in [7J and elsewhere.

2. Throughout the paper, let A be a C*-algebra with an identity
and A ** be the second dual of A. Then A ** is a W*-algebra (von Neumann
algebra). We shall consider A as lying in A ** under the canonical embedding.
In order to obtain an abstract version of Korovkin's result (i), we will use
the following notation.

DEFINITION 2.1. Let f be a pure state of A and Nt be the left kernel or.f
that is, the set of all elements x in A with f(x*x) = O. A positive element x
in A is said to peak for f if E(x) = 1 - £(j), where E(x) and EU) denote.
respectively, the supports of x andfin A**.
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THEOREM 2.2. Let f be a pure state of A and let x peak for f If a net of
positive linear functionals f\ on A satisfies the two conditions limfA(1) = 1
and limfb") = 0, then {II} converges weak* to f: limf\(z) = fez) for all
ZEA.

Proof Set L = {a E A: lim.fA(a*a) = a}. Then L is a closed left ideal
of A. We first show that L = Nt. In fact, let g be a pure state of A with
L eNg. Since .fA(x2) ~ II X II/\(x) for all A, we have x E L by the assumption
lim.fA(x) = o. Then x E Ng and hence E(g) ~ 1 - E(x) = E(1). Since
E(1), E(g) are minimal in A **, we have E(f) = E(g) and so f = g. It
follows by Theoreme 2.9.5(iii) in [4] that L = Nt. Now, let y E Ker(f).
Then there exist elements a, b in Nt with y = a + b*. Observe that
1.fA(y)1 2 ~ 2]1.fA li.fA(a*a + b*b) for all A. Then lim.fA(y) = 0 because
a, bEL and lim Ilf\ II = 1. On the other hand, each Z E A can be expressed
as y + Cl! • I with some y E Ker(f) and a certain complex number cx. Therefore
we have

limf\(z) = limf\(y) + cx limfll) = cx = fez)

for all z E A and the proof is complete.
Observe that if A is commutative and a is an element of A such that the

closed ideal M generated by a is maximal, then I a I peaks for the character
defined by M. Therefore the following result established by Choda and
Echigo [3] is a special case of Theorem 2.2.

COROLLARY 2.3 (Choda and Echigo [3]). Let A be a commutative C*­
algebra with identity, M be a principal maximal ideal generated by a and X
the character defined by }vI. Let {fn} be a sequence ofpositive linear functionals
on A such that limfn(l) = 1 and limfn(] a 1

2) = 0. Then limfn(x) = x(x)
for all x E A.

We next show that if A is separable, then, for an arbitrary pure state f
of A, there always exists an element which peaks for f To see this, we first
give a characterization of peaking elements.

LEMMA 2.4. Let f be a pure state of A and x be a positive element of Nt .
Then, in order for x to peak for f it is necessary and sufficient that each pure
state g ofA with g(x) = °is equal to f

Proof If x peaks for f and g is a pure state of A with g(x) = 0, then
E(g) ~ I - E(x) = E(f). Since E(f) and E(g) are minimal, f = g and the
necessity is proved. Now suppose that each pure state g of A with g(x) = °
is equal tof Setp = 1 - E(x) and L = {a E A: ap = a}. Then L is a closed
left ideal of A which contains x. Therefore if g is a pure state of A with
L C N g , then g(x) = 0, so that g = f by the assumption. In other words,
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L = Nt. Note that Nt = {a E A: aE(f) = O}. Hence p = E(f) because p
and E(f) are closed in A** (cf. [1, p. 279]), and the sufficiency is proved.

THEOREM 2.5. Let A be a separable C*-algebra with an identity and f be
a pure state of A. Then there exists an element lvhich peaks for .f

Proof Since Nt n Nl is a separable C*-algebra, it has an approximate
identity 'lei, e2 , ••• }. Then lim en = I - E(j) in the weak'" topology of A q,

Set

x = l: 2-nen .

11=1

We show that x peaks for f Obviously, x E Nt. If g is a pure state o~' A

with g(x) = 0, then g(en ) = 0 for all n = L 2, .... Therefore g(l - £(1») = 0
and hence E(g) ::::;;: E(f). Since E(j) and E(g) are minimal in A*'" we have
g = f. It follows by Lemma 2.4 that x peaks for f

3. In this section, we shall generalize Korovkin's result (ii) for positive
linear operators to arbitrary C*-algebras. To this end, we will use the
following notation.

DEFINITION 3.1. Let K be a subset of A which contains the identity,
and let E(A) be the set of all states of A. The set of allfin E(A) such that!
is the only positive linear functional on A which extends f K is called the
Choquet boundary of E(A) for K, and is denoted by cK(E(A».

Let A sa be the real linear space consisting of all self-adjoint elements of A.
We then have the following

LEMMA 3.2. Let S be a self-adjoint linear subspace of A containing the
identity. Thenfor each a E A sa andfE os(E(A)),f(a) = infU~x): XES, X :;; a}.

Proof Denote this inf by m. By the definition of 111, lea) ~ m. We
further have that f(a) = 111 if a E S n A", . To complete the proof, we need
to show that f(a) = m if a rf= S n A.", . Let IR be the field of all real numbers
and set

L = {x + o:a: XES n As" . ex E IR}.

Then L is a real linear subspace of A sa . For each 0. E IK and XES n A.,,, ,

let go(.J( + cxa) = f(x) + cxm. Then go is a real linear functional on L We
show go(Y) ~ 0 for each positive element y in L. Let y = x + ,"Y.a be a
positive element in L, where XES n A"o ,ex E IR. If 0. :;; 0, then f(:xa) =

ol(a) ::::;;: cxm and so giy) = f(x) + 0.l11 ~ f(x) ~ f(cxa) = f( r) ~ o. If
.:\ < 0, then we get a ::::;;: -ex-Ix E S n A 80 , so that 111 ~ If-cx-1x) and hence
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goc.v) = f(x) + am :? 0, as required. It follows by Krein's extension theorem
(see [8, p. 227]) that there exists a linear functional gl on A sa such that
gl(X) :? 0 for all positive elements x in A and go = gl I L. For each x E A,
set

g(x) = gl«X + x*)/2) + igl«(x - x*)/2i),

where i = (_1)1/2. Then g is a positive linear functional on A such that
g IS = fl S. This implies g = f, since fE os(E(A». We therefore have
m = go(a) = gl(a) = g(a) = f(a) and the proof is complete.

Let K be a subset of A and F be a subset of E(A). For every a, b E A sa

and E > 0, we now set

K(a) = {x E K: x :? a, x E A,,,},

F(b; a, E) = {fE F:f(b) < f(a) + E}.

We then have the following

LEMMA 3.3. Let S be as in Lemma 3.2 and let F be a weak*-closed subset
of E(A) such that Fe cs(E(A». If a E Ada and E > 0, then there exists afinite
subset {Xl'"'' x n} ofSea) such that F = F(x1 ; a, E) U ... U F(X n ; a, E).

Proof Let a E A.,a and E > O. We first show that n {F\F(x; a, E):
x E Sea)} = ,0. Indeed, if there exists an elementfo in n [F\F(x; a, E): x E Sea)},
then fo(x) :? fo(a) + E for all x E Sea). It follows by Lemma 3.2 that
fo(a) = inf{fo(x): x E Sea)} :? fo(a) + E. We thus get E < 0, contrary to the
hypothesis E > O. [n other words, F = U {F(x; a, E): x E Sea)}. Since F is
weak*-cIosed and each F(x; a, E) is weak*-open relative to F, there exists
a subset {Xl"'" Xn } of Sea) such that F = F(xl ; a, E) U ... U F(x" ; a, E)
and the proof is complete.

Let peA) be the set of all pure states of A and peA) be the pure state
space of A, that is, the closure of peA) in the weak* topology in A *. The
following result is our promised generalization of Korovkin's theorem (ii).

THEOREM 3.4. Let K be a subset of A containing the identity such that
peA) C cK(E(A». If {TAl is a net of positive linear operators on A into itself
such that lim II TA(x) - x II = 0 for all x E K, then lim II T.\(x) - xii = 0 for
all x E A.

Proof To prove the theorem, we need only show that lim Ii Tia) - a II = 0
for all a E AN' . Let a be any fixed element of As" and let E > O. Let S be the
linear span of K U K*, where K* = {x*: x E K}. Then S is a self-adjoint
subspace of A containing the identity and peA) C csCE(A». It follows by
Lemma 3.3 that there exists a finite subset {Xl'"'' x n} of Sea) such that
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peA) = P(A)(xl ; a, E) U ... U P(A)(Xn ; a, E). Note that lim T:I(x) - x I: = 0
for all XES and, hence, there exists A~ such that max{l! T:I(xj) - x j II:

1 ~j ~ n} < E for an A ?: A~ . Then, for eachj, we have

T:I(a) ~ T:I(xj) = Xj + T:I(xj) - Xj

~ Xj + II T:I(xj) - Xj If • 1

~ Xj + E' 1

for all A ?: A~ . Choose g E peA). There exists an Xle such that g E P(A)(xl: ;
a, E); hence we have

g(T:I(a)) ~ g(Xk + E • 1) = g(Xk) + E

~ g(a) + 2E = g(a + 2E . 1)

for all A~ A~ . It follows that T:I(a) ~ a + 2E . 1 for all A. ~ A; . Similarly,
there exists A; such that T:I(-a) ~ -a + 2E . 1 for all A~ A; . Choose an
index '\ such that A. ~ A; and A. ~ it; . Then, for every A~ A., we have
-2E . 1 ~ T:I(a) - a ~ 2E . 1 and, hence, II T!I(a) - a ~ 2E. Since E is
arbitrary, lim i! T!I(a) - a II = 0 for all a E A sa and the proof is complete.

COROLLARY 3.5 (Nakamoto and Nakamura (6]). Suppose A is commuta­
tive and every maximal ideal of A is principal. Let a1 , ... , aI, be elements of A
having the following property: For each maximal ideal M of A, there exists
an element m ofA such that m generates M and I m 12 is expressible as a linear
combination of a1 , ... , ale' If {Tn} is a sequence of positive linear operators
on A into itself such that lim iI Tn(aj) - aj II = 0 for j = 0, 1, ... , k, where
ao = 1, then lim II Tn(a) - a II = °for all a E A.

Proof Set K = {ao , a1 , ... , ale}' Obviously, peA) is weak*-closed in E(A).
So, by Theorem 3.4, we need only show that peA) C oK(E(A)). LetfE peA)
and M = Ker(f). Since M is a maximal ideal of A, M is generated by some
element m of A. Note that 1(1 m I) = O. If g is a state of A withfl K = g
then by the property of {a1 ,... , ale}, g(1 m 12) = 1(! m and so g(1 m :2) = o.
It follows by Corollary 2.3 that g = f We thus get fE oK(E(A)) and the
proof is complete.
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