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1. The well-known theorems of Korovkin [3] assert the following:

(1) If{f.} is a sequence of positive linear functionals on C[f, 1] and
if #, is a point in [0, 1], then £,(x) — x(¢;) for all x € C[0, 1], provided only
that £,(1) — ! and f,.((t — 1,®) — 0.

(i) If /7,} is a sequence of positive linear operators on C{0, 1] into
itself] then 7,(x} — Xx, in the uniform topology, provided onlv that 7,(1) — 1,
7.ty — 1, and T,{¢t?) — r? in that topology.

Here Cl0, 1] denotes the algebra of all continuous real-valued functions
on the unit interval [0, 1]. These theorems are fundamental in Korovkin’s
theory of approximation. Indeed, in [5], several proofs have been given to
the Weierstrass approximation theorem for algebraic polynomials, all based
on {ii).

In the present paper, we generalize (i) and (i) to arbitrary C*-algebras.
Our main results are Theorems 2.2 and 3.4, corresponding, respectively, to
(i) and (ii). We note that Arveson’s method in [2] plays an essential role in
the proof of Theorem 3.4.

Korovkin-type theorems for noncommutative C*-algebras have been
proved in [7] and elsewhere.

2. Throughout the paper, let 4 be a C*-algebra with an identity
and A** be the second dual of 4. Then A** is a W *-algebra (von Neumann
algebra). We shall consider 4 as lying in 4** under the canonical embedding.
In order to obtain an abstract version of Korovkin’s result (i}, we wili use
the following notation.

DermvpTion 2.1, Let fbe a pure state of 4 and N; be the left kernel of £,
that is, the set of all elements x in 4 with f(x*x) = 0. A positive element x
in 4 is said to peak for fif E(x) = 1 — E(f), where £(x) and £{f) denote,
respectively, the supports of x and fin 4*%,
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THEOREM 2.2. Let f be a pure state of A and let x peak for f. If a net of
positive linear functionals f, on A satisfies the two conditions lim £,(1) = 1
and lim fy(x) =0, then {f,} converges weak™® to f:lim fy(z) = f(z) for all
ze A.

Proof. Set L ={ac A:lim fi(a*a) = 0}. Then L is a closed left ideal
of 4. We first show that L = N;. In fact, let g be a pure state of A4 with
L CN,. Since f,(x?) < || x| fi(x) for all A, we have x € L by the assumption
lim fi(x) =0. Then xeN, and hence E(g) <1 — E(x) = E(f). Since
E(f), E(g) are minimal in A**, we have E(f) = E(g) and so f=g. It
follows by Théoréme 2.9.5(iii) in [4] that L = N,. Now, let y € Ker(f).
Then there exist elements g, b in N; with y =a 4 b*. Observe that
LA < 20 fillfi(a*a + b*b) for all A. Then limf(y) =0 because
a,be L and lim|| f, || = 1. On the other hand, each z€ 4 can be expressed
asy + a - 1 with some y € Ker(f) and a certain complex number «. Therefore
we have

lim fi(z) = lim fy(y) + a lim fi(1) = o = f(2)

for all z € A4 and the proof is complete.

Observe that if 4 is commutative and a is an element of 4 such that the
closed ideal M generated by « is maximal, then | a | peaks for the character
defined by M. Therefore the following result established by Choda and
Echigo [3] is a special case of Theorem 2.2.

CoROLLARY 2.3 (Choda and Echigo [3]). Let A be a commutative C*-
algebra with identity, M be a principal maximal ideal generated by a and x
the character defined by M. Let {1} be a sequence of positive linear functionals
on A such that limf,(1) =1 and limf,(] a |2) = 0. Then lim f(x) = x(x)
Jor all x € A.

We next show that if 4 is separable, then, for an arbitrary pure state f
of A, there always exists an element which peaks for f. To see this, we first
give a characterization of peaking elements.

LemMma 2.4.  Let f be a pure state of A and x be a positive element of N; .
Then, in order for x to peak for f it is necessary and sufficient that each pure
state g of A with g(x) = 0 is equal to f.

Proof. If x peaks for f and g is a pure state of 4 with g(x) = 0, then
E(g) <1 — E(x) = E(f). Since E(f) and E(g) are minimal, f = g and the
necessity is proved. Now suppose that each pure state g of 4 with g(x) =0
isequaltof. Setp =1 — E(x) and L ={ae A: ap = 0}. Then L is a closed
left ideal of 4 which contains x. Therefore if g is a pure state of 4 with
LCN,, then g(x) =0, so that g = f by the assumption. In other words,
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L = N;. Note that N; ={ae A: aE(f) = 0}. Hence p = E(f) because p
and E(f) are closed in A** (cf. [1, p. 279]), and the sufficiency is proved.

THEOREM 2.5. Let A be a separable C*-algebra with ar identity and f be
a pure state of A. Then there exists an element which peaks for f.

Proof. Since N; N NF is a separable C*-algebra, it has an approximate
identity {e, , €5 ,...}. Then lim e, = 1 — E(f) in the weak ™ topology of 4.
Set

o«
X = Z 2 %, .

=1

We show that x peaks for f. Obviously, xe N, . If g is a pure state of A
with g(x) = 0, then g(e,) = Oforalln = 1,2,.... Therefore g(1 — E{(f)) =0
and hence E(g) < E(f). Since E(f) and E(g) are minimal in A*~, we have
g = f. Tt follows by Lemma 2.4 that x peaks for /.

3. In this section, we shall generalize Korovkin’s result (ii) for positive
linear operators to arbitrary C*-algebras. To this end, we will use the
following notation.

DermutioN 3.1. Let K be a subset of 4 which contains the identity,
and let E(A) be the set of all states of 4. The set of all fin E(A) such that /
is the only positive linear functional on A which extends ' K is called the
Choquet boundary of E(A) for K, and is denoted by ¢ (E(4)).

Let A,, be the real linear space consisting of ali self-adjoint elements of A.
We then have the following

LemMa 3.2. Ler S be a self-adjoint linear subspace of A containing the
identity. Then for eacha € A, and f € 6 (E(A4)), f(a) = inf{f(x): xe 8 x = a).

Proof. Denote this inf by m. By the definition of m, f{a) < m. We
further have that f(a) =m ifaeSn A4,,. To complete the proof, we need
to show that f(a) =mifaé¢ S N 4., . Let R be the field of all real numbers
and set

L={x+amxeSn4,.xcR}

Then L is a real linear subspace of 4,,. Foreach o e R and xeS M 4, .
let go(x + o) = f(x) + am. Then g, is a real linear functional on L. We
show go{y) = 0 for each positive element 11 in L. Let y = x + 2 be a
positive element in L, where xe SN A, , xR, If o = 0. then flag) =
af(a) <om and so go(y) =f(x) + am = f(x) ~ flaa) =F(33 =0 I
a < 0, then we get ¢ <{ —a'xe SN A4,,, so that m < f{—a'x) and hence
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go(») = f(x) + o = 0, as required. It follows by Krein’s extension theorem
(see [8, p. 227]) that there exists a linear functional g; on A4, such that
g.(x) = 0 for all positive elements x in 4 and g, =g, | L. For each x e 4,
set

g(x) = gil(x + x*)[2) + igi((x — x¥)[2i),

where i = (—1)'/2 Then g is a positive linear functional on 4 such that
g|S=/f|5 This implies g =f, since feg(E(4)). We therefore have
m = go(a) = gy(a) = g(a) = f(a) and the proof is complete.

Let K be a subset of 4 and F be a subset of E(A4). For every a,be 4,
and € > 0, we now set

K@) ={xeKix Za,xecd,}
F(b:a, &) ={feF:f(b) < f(a) + €.

‘We then have the following

LemMa 3.3. Let S be as in Lemma 3.2 and let F be a weak*-closed subset
of E(A) such that F C 04(E(A)). If a € A, and € > 0, then there exists a finite
subset {X; ..., X} of S(a) such that F = F(x, ;a,e) Y - U F(x,; a, €).

Proof. let aceA,, and € >0. We first show that () {F\F(x;a, e):
x € S(a)} = =.Indeed, if there exists an element f; in () {F\F(x; a, €): x € S(a)},
then fo(x) = fi(a) -+ € for all xeS(a). It follows by Lemma 3.2 that
Jo@) = mf{fy(x): x € S(a)} = fo(a) + €. We thus get € < 0, contrary to the
hypothesis € > 0. [n other words, F = |J{F(x; a, €): x € S(a)}. Since F is
weak *-closed and each F(x;a, ) is weak*-open relative to F, there exists
a subset {x;,..., x,} of S(a) such that F =F(x,;a,€) U - UF(x,;a,¢)
and the proof is complete.

Let P(A) be the set of all pure states of 4 and P(A4) be the pure state
space of A4, that is, the closure of P(A4) in the weak* topology in 4*. The
following result is our promised generalization of Korovkin’s theorem (ii).

ToeorReM 3.4. Let K be a subset of A containing the identity such that
P(A) C e (E(A). If {T,) is a net of positive linear operators on A into itself
such that lim || TW(x) — x| = 0 for afl x € K, then lim || T)(x) — x || = 0 for
all xe A.

Proof. To prove the theorem, we need only show thatlim || T)(a) —a)| =0
forall a € A,, . Let a be any fixed element of 4,, and let € > 0. Let S be the
linear span of K\ K*, where K* = {x*. xe K}. Then § is a self-adjoint
subspace of 4 containing the identity and P(A4) C é4(E(4)). Tt follows by
Iemma 3.3 that there exists a finite subset {x; ,..., x,} of S(¢) such that
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P(A) = P(A)(x, ; a, €) U -~ U P(A)(x,, ; a, €). Note that lim | T)(x) - x| =0
for all xS and, hence, there exists A, such that max{|| T\(x;) — x;I:
I <j<n <eforall A = A, . Then, for each j, we have

Ty < Ti(xy) = x; -+ To(x) — x;
< x4+ 1) — x50 - 1
< X + el

for all A = A, . Choose g € P(4). There exists an x; such that g e P(4)(x, ;
a, €); hence we have

g(Ta) < glxp+ € 1) =glx;) + ¢
< gla) + 2¢ = gla+ 2¢- 1)

for all A = A]. It follows that Ty(a) < a -+ 2¢ -1 for all A > A . Similarly,
there exists A, such that T)(—a) << —a + 2¢ -1 for all A = A . Choose an
index A, such that A, > A, and A, > A . Then, for every A = )., we have
—2e 1 < Ty(a) —a < 2¢1 and, hence, | T)(a) — a| < 2¢ Since € is
arbitrary, lim| Ty(a@) — al| = 0 for all ae 4, and the proof is complete.

CoroLLARY 3.5 (Nakamoto and Nakamura [6]). Suppose 4 is commuta-
tive and every maximal ideal of A is principal. Let a, ,..., a;, be elements of A
having the following property: For each maximal ideal M of A, there exists
an element m of A such that m generates M and | m |* is expressible as a linear
combination of ay ,...,a, . If {T,} is a sequence of positive {inear operators
on A into itself such that im || T(a;) — a;|| =0 for j =0, 1,..., k, where
ay =1, thenim || T (@) — a| =0 for all a € A.

Proof. Set K ={a,, a; ,..., az}. Obviously, P(4) is weak*-closed in E(4).
So, by Theorem 3.4, we need only show that P(4) C 8,(E(A4)). Let fe P(4)
and M = Ker(f). Since M is 2 maximal ideal of A, M is generated by some
element mof A. Note that f(|m|) =0. I[fgisastate of A withf| K =g K,
then by the property of {a; ,..., ai}, gl m |%) = f( m 1*) and so g(} m %) = (.
Tt follows by Corollary 2.3 that g = f. We thus get fc 8(FE(4)) and the
proof is complete.
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