Korovkin's Theorems for C*-Algebras

SIN-EI TAKAHASI

Department of Mathematics, Ibaraki University, Mito, Japan Communicated by Oved Shisha

Received April 20, 1978

1. The well-known theorems of Korovkin [5] assert the following:

(i) If $\{f_n\}$ is a sequence of positive linear functionals on C[0, 1] and if t_0 is a point in [0, 1], then $f_n(x) \to x(t_0)$ for all $x \in C[0, 1]$, provided only that $f_n(1) \to 1$ and $f_n((t - t_0)^2) \to 0$.

(ii) If $\{T_n\}$ is a sequence of positive linear operators on C[0, 1] into itself, then $T_n(x) \to x$, in the uniform topology, provided only that $T_n(1) \to 1$, $T_n(t) \to t$, and $T_n(t^2) \to t^2$ in that topology.

Here C[0, 1] denotes the algebra of all continuous real-valued functions on the unit interval [0, 1]. These theorems are fundamental in Korovkin's theory of approximation. Indeed, in [5], several proofs have been given to the Weierstrass approximation theorem for algebraic polynomials, all based on (ii).

In the present paper, we generalize (i) and (ii) to arbitrary C^* -algebras. Our main results are Theorems 2.2 and 3.4, corresponding, respectively, to (i) and (ii). We note that Arveson's method in [2] plays an essential role in the proof of Theorem 3.4.

Korovkin-type theorems for noncommutative C^* -algebras have been proved in [7] and elsewhere.

2. Throughout the paper, let A be a C^* -algebra with an identity and A^{**} be the second dual of A. Then A^{**} is a W^* -algebra (von Neumann algebra). We shall consider A as lying in A^{**} under the canonical embedding. In order to obtain an abstract version of Korovkin's result (i), we will use the following notation.

DEFINITION 2.1. Let f be a pure state of A and N_f be the left kernel of f, that is, the set of all elements x in A with $f(x^*x) = 0$. A positive element x in A is said to peak for f if E(x) = 1 - E(f), where E(x) and E(f) denote. respectively, the supports of x and f in A^{**} .

THEOREM 2.2. Let f be a pure state of A and let x peak for f. If a net of positive linear functionals f_{λ} on A satisfies the two conditions $\lim f_{\lambda}(1) = 1$ and $\lim f_{\lambda}(x) = 0$, then $\{f_{\lambda}\}$ converges weak* to f: $\lim f_{\lambda}(z) = f(z)$ for all $z \in A$.

Proof. Set $L = \{a \in A: \lim f_{\lambda}(a^*a) = 0\}$. Then L is a closed left ideal of A. We first show that $L = N_f$. In fact, let g be a pure state of A with $L \subseteq N_g$. Since $f_{\lambda}(x^2) \leq ||x|| f_{\lambda}(x)$ for all λ , we have $x \in L$ by the assumption $\lim f_{\lambda}(x) = 0$. Then $x \in N_g$ and hence $E(g) \leq 1 - E(x) = E(f)$. Since E(f), E(g) are minimal in A^{**} , we have E(f) = E(g) and so f = g. It follows by Théorème 2.9.5(iii) in [4] that $L = N_f$. Now, let $y \in \text{Ker}(f)$. Then there exist elements a, b in N_f with $y = a + b^*$. Observe that $|f_{\lambda}(y)|^2 \leq 2 ||f_{\lambda}|| f_{\lambda}(a^*a + b^*b)$ for all λ . Then $\lim f_{\lambda}(y) = 0$ because $a, b \in L$ and $\lim ||f_{\lambda}|| = 1$. On the other hand, each $z \in A$ can be expressed as $y + \alpha \cdot 1$ with some $y \in \text{Ker}(f)$ and a certain complex number α . Therefore we have

$$\lim f_{\lambda}(z) = \lim f_{\lambda}(y) + \alpha \lim f_{\lambda}(1) = \alpha = f(z)$$

for all $z \in A$ and the proof is complete.

Observe that if A is commutative and a is an element of A such that the closed ideal M generated by a is maximal, then |a| peaks for the character defined by M. Therefore the following result established by Choda and Echigo [3] is a special case of Theorem 2.2.

COROLLARY 2.3 (Choda and Echigo [3]). Let A be a commutative C*algebra with identity, M be a principal maximal ideal generated by a and χ the character defined by M. Let $\{f_n\}$ be a sequence of positive linear functionals on A such that $\lim f_n(1) = 1$ and $\lim f_n(|a|^2) = 0$. Then $\lim f_n(x) = \chi(x)$ for all $x \in A$.

We next show that if A is separable, then, for an arbitrary pure state f of A, there always exists an element which peaks for f. To see this, we first give a characterization of peaking elements.

LEMMA 2.4. Let f be a pure state of A and x be a positive element of N_f . Then, in order for x to peak for f it is necessary and sufficient that each pure state g of A with g(x) = 0 is equal to f.

Proof. If x peaks for f and g is a pure state of A with g(x) = 0, then $E(g) \leq 1 - E(x) = E(f)$. Since E(f) and E(g) are minimal, f = g and the necessity is proved. Now suppose that each pure state g of A with g(x) = 0 is equal to f. Set p = 1 - E(x) and $L = \{a \in A : ap = 0\}$. Then L is a closed left ideal of A which contains x. Therefore if g is a pure state of A with $L \subset N_g$, then g(x) = 0, so that g = f by the assumption. In other words,

 $L = N_f$. Note that $N_f = \{a \in A : aE(f) = 0\}$. Hence p = E(f) because p and E(f) are closed in A^{**} (cf. [1, p. 279]), and the sufficiency is proved.

THEOREM 2.5. Let A be a separable C^* -algebra with an identity and f be a pure state of A. Then there exists an element which peaks for f.

Proof. Since $N_f \cap N_f^*$ is a separable C*-algebra, it has an approximate identity $\{e_1, e_2, ...\}$. Then $\lim e_n = 1 - E(f)$ in the weak* topology of $A^{\times *}$. Set

$$x = \sum_{n=1}^{\infty} 2^{-n} e_n \, .$$

We show that x peaks for f. Obviously, $x \in N_f$. If g is a pure state of A with g(x) = 0, then $g(e_n) = 0$ for all n = 1, 2, Therefore g(1 - E(f)) = 0 and hence $E(g) \leq E(f)$. Since E(f) and E(g) are minimal in A^{**} , we have g = f. It follows by Lemma 2.4 that x peaks for f.

3. In this section, we shall generalize Korovkin's result (ii) for positive linear operators to arbitrary C^* -algebras. To this end, we will use the following notation.

DEFINITION 3.1. Let K be a subset of A which contains the identity, and let E(A) be the set of all states of A. The set of all f in E(A) such that f is the only positive linear functional on A which extends $f \in K$ is called the Choquet boundary of E(A) for K, and is denoted by $\partial_K(E(A))$.

Let A_{sa} be the real linear space consisting of all self-adjoint elements of A. We then have the following

LEMMA 3.2. Let S be a self-adjoint linear subspace of A containing the identity. Then for each $a \in A_{sa}$ and $f \in \partial_{S}(E(A)), f(a) = \inf\{f(x) : x \in S, x \ge a\}$.

Proof. Denote this inf by m. By the definition of m, $f(a) \leq m$. We further have that f(a) = m if $a \in S \cap A_{sa}$. To complete the proof, we need to show that f(a) = m if $a \notin S \cap A_{sa}$. Let \mathbb{R} be the field of all real numbers and set

$$L = \{x + \alpha a \colon x \in S \cap A_{su}, \alpha \in \mathbb{R}\}.$$

Then L is a real linear subspace of A_{sa} . For each $\alpha \in \mathbb{R}$ and $x \in S \cap A_{sa}$, let $g_0(x + \alpha a) = f(x) + \alpha m$. Then g_0 is a real linear functional on L. We show $g_0(y) \ge 0$ for each positive element y in L. Let $y = x + \alpha a$ be a positive element in L, where $x \in S \cap A_{sa}$, $\alpha \in \mathbb{R}$. If $\alpha \ge 0$, then f(xa) = $\alpha f(a) \le \alpha m$ and so $g_0(y) = f(x) + \alpha m \ge f(x) + f(\alpha a) = f(y) \ge 0$. If $\alpha < 0$, then we get $a \le -\alpha^{-1}x \in S \cap A_{sa}$, so that $m \le f(-\alpha^{-1}x)$ and hence $g_0(y) = f(x) + \alpha m \ge 0$, as required. It follows by Krein's extension theorem (see [8, p. 227]) that there exists a linear functional g_1 on A_{sa} such that $g_1(x) \ge 0$ for all positive elements x in A and $g_0 = g_1 \mid L$. For each $x \in A$, set

$$g(x) = g_1((x + x^*)/2) + ig_1((x - x^*)/2i),$$

where $i = (-1)^{1/2}$. Then g is a positive linear functional on A such that g | S = f | S. This implies g = f, since $f \in \hat{c}_S(E(A))$. We therefore have $m = g_0(a) = g_1(a) = g(a) = f(a)$ and the proof is complete.

Let K be a subset of A and F be a subset of E(A). For every $a, b \in A_{sa}$ and $\epsilon > 0$, we now set

$$K(a) = \{x \in K : x \ge a, x \in A_{sa}\},\$$

$$F(b; a, \epsilon) = \{f \in F : f(b) < f(a) + \epsilon\}.$$

We then have the following

LEMMA 3.3. Let S be as in Lemma 3.2 and let F be a weak*-closed subset of E(A) such that $F \subseteq \hat{c}_{s}(E(A))$. If $a \in A_{sa}$ and $\epsilon > 0$, then there exists a finite subset $\{x_1, ..., x_n\}$ of S(a) such that $F = F(x_1; a, \epsilon) \cup \cdots \cup F(x_n; a, \epsilon)$.

Proof. Let $a \in A_{aa}$ and $\epsilon > 0$. We first show that $\bigcap \{F \setminus F(x; a, \epsilon): x \in S(a)\} = \emptyset$. Indeed, if there exists an element f_0 in $\bigcap \{F \setminus F(x; a, \epsilon): x \in S(a)\}$, then $f_0(x) \ge f_0(a) + \epsilon$ for all $x \in S(a)$. It follows by Lemma 3.2 that $f_0(a) = \inf\{f_0(x): x \in S(a)\} \ge f_0(a) + \epsilon$. We thus get $\epsilon \le 0$, contrary to the hypothesis $\epsilon > 0$. In other words, $F = \bigcup \{F(x; a, \epsilon): x \in S(a)\}$. Since F is weak*-closed and each $F(x; a, \epsilon)$ is weak*-open relative to F, there exists a subset $\{x_1, ..., x_n\}$ of S(a) such that $F = F(x_1; a, \epsilon) \cup \cdots \cup F(x_n; a, \epsilon)$ and the proof is complete.

Let P(A) be the set of all pure states of A and $\overline{P}(A)$ be the pure state space of A, that is, the closure of P(A) in the weak* topology in A*. The following result is our promised generalization of Korovkin's theorem (ii).

THEOREM 3.4. Let K be a subset of A containing the identity such that $\overline{P}(A) \subset \hat{c}_K(E(A))$. If $\{T_{\lambda}\}$ is a net of positive linear operators on A into itself such that $\lim || T_{\lambda}(x) - x || = 0$ for all $x \in K$, then $\lim || T_{\lambda}(x) - x || = 0$ for all $x \in A$.

Proof. To prove the theorem, we need only show that $\lim || T_{\lambda}(a) - a || = 0$ for all $a \in A_{so}$. Let a be any fixed element of A_{sa} and let $\epsilon > 0$. Let S be the linear span of $K \cup K^*$, where $K^* = \{x^* : x \in K\}$. Then S is a self-adjoint subspace of A containing the identity and $\overline{P}(A) \subset \hat{c}_S(E(A))$. It follows by Lemma 3.3 that there exists a finite subset $\{x_1, ..., x_n\}$ of S(a) such that

 $\overline{P}(A) = \overline{P}(A)(x_1; a, \epsilon) \cup \cdots \cup \overline{P}(A)(x_n; a, \epsilon)$. Note that $\lim ||T_{\lambda}(x) - x|| = 0$ for all $x \in S$ and, hence, there exists λ'_{ϵ} such that $\max\{||T_{\lambda}(x_j) - x_j||: 1 \leq j \leq n\} < \epsilon$ for all $\lambda \geq \lambda'_{\epsilon}$. Then, for each *j*, we have

$$egin{aligned} T_{\lambda}(a) &\leqslant T_{\lambda}(x_{j}) = x_{j} + T_{\lambda}(x_{j}) - x_{j} \ &\leqslant x_{j} + \parallel T_{\lambda}(x_{j}) - x_{j} \parallel \cdot 1 \ &\leqslant x_{i} + \epsilon \cdot 1 \end{aligned}$$

for all $\lambda \ge \lambda'_{\epsilon}$. Choose $g \in P(A)$. There exists an x_k such that $g \in \overline{P}(A)(x_k; a, \epsilon)$; hence we have

$$g(T_{\lambda}(a)) \leq g(x_{k} + \epsilon \cdot 1) = g(x_{k}) + \epsilon$$
$$\leq g(a) + 2\epsilon = g(a + 2\epsilon \cdot 1)$$

for all $\lambda \ge \lambda'_{\epsilon}$. It follows that $T_{\lambda}(a) \le a + 2\epsilon \cdot 1$ for all $\lambda \ge \lambda'_{\epsilon}$. Similarly, there exists λ''_{ϵ} such that $T_{\lambda}(-a) \le -a + 2\epsilon \cdot 1$ for all $\lambda \ge \lambda''_{\epsilon}$. Choose an index λ_{ϵ} such that $\lambda_{\epsilon} \ge \lambda'_{\epsilon}$ and $\lambda_{\epsilon} \ge \lambda''_{\epsilon}$. Then, for every $\lambda \ge \lambda_{\epsilon}$, we have $-2\epsilon \cdot 1 \le T_{\lambda}(a) - a \le 2\epsilon \cdot 1$ and, hence, $||T_{\lambda}(a) - a|| \le 2\epsilon$. Since ϵ is arbitrary, $\lim ||T_{\lambda}(a) - a|| = 0$ for all $a \in A_{sa}$ and the proof is complete.

COROLLARY 3.5 (Nakamoto and Nakamura [6]). Suppose A is commutative and every maximal ideal of A is principal. Let $a_1, ..., a_k$ be elements of A having the following property: For each maximal ideal M of A, there exists an element m of A such that m generates M and $|m|^2$ is expressible as a linear combination of $a_1, ..., a_k$. If $\{T_n\}$ is a sequence of positive linear operators on A into itself such that $\lim ||T_n(a_j) - a_j|| = 0$ for j = 0, 1, ..., k, where $a_0 = 1$, then $\lim ||T_n(a) - a|| = 0$ for all $a \in A$.

Proof. Set $K = \{a_0, a_1, ..., a_k\}$. Obviously, P(A) is weak*-closed in E(A). So, by Theorem 3.4, we need only show that $P(A) \subset \partial_K(E(A))$. Let $f \in P(A)$ and M = Ker(f). Since M is a maximal ideal of A, M is generated by some element m of A. Note that f(|m|) = 0. If g is a state of A with f | K = g | K, then by the property of $\{a_1, ..., a_k\}$, $g(|m|^2) = f(|m|^2)$ and so $g(|m|^2) = 0$. It follows by Corollary 2.3 that g = f. We thus get $f \in \partial_K(E(A))$ and the proof is complete.

ACKNOWLEDGMENTS

We thank the referee and Professor O. Shisha for suggestions for improving the paper and Professor M. Hasumi for helpful discussions.

SIN-EI TAKAHASI

References

- 1. C. A. AKEMANN, The general Stone–Weierstrass problem, J. Functional Analysis 4 (1969), 277–294.
- 2. W. B. ARVESON, An approximation theorem for function algebras, unpublished manuscript, 1970.
- 3. H. CHODA AND M. ECHIGO, On theorem of Korovkin, Proc. Japan Acad. 39 (1963), 107-108.
- 4. J. DIXMIER, "Les C*-algèbres et leur représentations," Cahiers Scientifique 24, Gauthier-Villars, Paris, 1964.
- 5. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Hindustan Pub., Delhi, India, 1960.
- 6. R. NAKAMOTO AND M. NAKAMURA, On theorems of Korovkin, II, Proc. Japan Acad. 41 (1965), 433-435.
- 7. W. M. PRIESTLEY, A noncommutative Korovkin theorem, J. Approximation Theory 16 (1976), 251-260.
- 8. C. E. RICKART, "General Theory of Banach Algebras," Van Nostrand, New York, 1960.